Муниципальное автономное общеобразовательное учреждение «Лицей №28 имени Н.А. Рябова» г. Тамбова

Рассмотрена и рекомендована к утверждению МО учителей математики, физики и информатики Протокол № 1 от 28. 08.2020

Утверждено приказом директора МАОУ «Лицей № 28 имени Н.А.Рябова» № 202 от 31.08.2020г.

Педагогическим советом протокол № 1 от 28.08.2020г.

РАБОЧАЯ ПРОГРАММА

учебного предмета *«МАТЕМАТИКА:* алгебра и начала математического анализа, геометрия» (профильный, 11a, 11б естественно-научный)

Уровень обучения: среднее общее образование

Содержание

1.	Пояснительная записка	.3
2.	Планируемые результаты обучения	8
3.	Содержание предмета	29
	Тематическое планирование с указанием количества час 34	OB

1. Пояснительная записка

математике для 10-11-х классов является Рабочая программа по составной частью основной образовательной программы среднего общего общеобразовательного образования Муниципального автономного учреждения "Лицей №28 имени Н.А.Рябова" и составлена в соответствии с основными положениями Федерального государственного образовательного стандарта среднего общего образования (приказ Минобрнауки РФ № 413 от 17 мая 2012 г.), рекомендациями Примерной программы среднего общего образования по математике и Программы общеобразовательных учреждений ФГОС. Математика 10-11 классы, составитель Бурмистрова Т.А. (Алгебра и начала математического анализа. Сборник рабочих программ. 10-11 классы базовый и углубленный уровни; пособие для учителей общеобразовательных учреждений -М.: Просвещение, 2016; Геометрия. Сборник рабочих программ 10-11 классы; пособие для учителей общеобразовательных учреждений -М.: Просвещение, 2015).

Рабочая учебная программа не содержит расхождений с авторскими программами Ш.А.Алимова и др., (Алгебра и начала математического анализа. Сборник рабочих программ. 10-11 классы базовый и углубленный уровни; пособие для учителей общеобразовательных учреждений.- М.: Просвещение, 2016.; Л.С. Атанасяна (Геометрия. Сборник рабочих программ. 10-11 классы; пособие для учителей общеобразовательных учреждений -М.: Просвещение, 2015). Увеличение часов на 1 по алгебре и 1 час по геометрии позволяет углубить изучение материала.

Программа детализирует и раскрывает содержание стандарта, определяет общую стратегию обучения, воспитания и развития учащихся средствами учебного предмета в соответствии с целями изучения математики, которые определены стандартом.

Обучение осуществляется по следующим учебникам:

1. Ш.А.Алимов и др. Алгебра и начала математического анализа 10-11

классы базовый и углубленный уровни М: Просвещение 2017 г.

2. Атанасян Л.С. и др. Геометрия 10-11 кл. М.: Просвещение, 2014 г. - 2017 г.

Срок реализации рабочей программы 2 года.

Изучение математики в старшей школе осуществляется на двух уровнях - базовом и углубленном, каждый из которых имеет свою специфику.

Углубленный уровень способствует получению образования в соответствии со склонностями и потребностями учащихся, обеспечивает их ориентацию и самоопределение. Изучение курса математики на углубленном уровне ставит своей целью завершение формирования системы математических знаний как продолжения математического образования основы ДЛЯ профессиональной подготовки. Открывает дополнительные возможности для совершенствования интеллектуальных творческих способностей И выпускников, развития исследовательских умений и навыков, формирования культуры мышления и математического языка.

Изучение курса математики на базовом уровне ставит своей направлено на достижение следующих **целей**:

- овладение системой математических понятий, законов и методов, изучаемых в пределах основной образовательной программы среднего общего образования, установление логической связи между ними;
- осознание и объяснение роли математики в описании и исследовании процессов и явлений; представление о математическом моделировании и его возможностях;
- овладение математической терминологией и символикой, начальными понятиями логики и принципами математического доказательства; самостоятельного проведения доказательных рассуждений в ходе решения задач;
- выполнение точных и приближенных вычисление и преобразований выражений; решение уравнений и неравенств; решение текстовых задач; исследование функций, построение их графиков; оценка

вероятности наступления событий в простейших ситуациях;

- изображение плоских и пространственных геометрических фигур, их комбинаций; чтение геометрических чертежей; описание и обоснование свойств фигур и отношений между ними;
- способность применять приобретенные знания и умения для решения задач, в том числе задач практического характера и задач из смежных учебных предметов.

На углубленном уровне к перечисленным выше добавляются:

- становление мотивации к последующему изучению математики, естественных и технических дисциплин в учреждениях системы среднего и высшего профессионального образования и для самообразования;
- понимание и умение объяснить причины введения абстракций при построении математических теорий;
- осознание и выявление структуры доказательных рассуждений, логически обоснования доказательств; осмысление проблемы соответствия дедуктивных выводов отвлеченных теорий и реальной жизни;
- овладение основными понятиями, идеями и методами математического анализа, теории вероятностей и статистики; способность применять полученные знания для описания и анализа проблем из реальной жизни;
- готовность к решению широкого класса задач из различных разделов математики и смежных учебных предметов, к поисковой и творческой деятельности, в том числе при решении нестандартных задач;
- овладение навыками использования компьютерных программ при решении математических задач, в том числе для поиска пути решения и иллюстрации хода рассуждения.

Содержательной основой и главным средством формирования и развития

всех указанных способностей служит целенаправленный отбор учебного материала, который ведётся на основе принципов научности фундаментальности, историзма, доступности и непрерывности, целостности системности математического образования, его связи с техникой, технологией, жизнью. Содержание по алгебре и началам математического формируется на основе Фундаментального ядра школьного анализа математического образования. Оно представлено в виде совокупности содержательных линий, раскрывающих наполнение Фундаментального ядра школьного математического образования применительно к старшей школе. Программа регламентирует объём материала, обязательного для изучения, но не задаёт распределения его по классам. Поэтому содержание данного курса включает следующие разделы: «Алгебра»; «Математический анализ»; «Вероятность и статистика»; «Геометрия». Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения окружающей реальности. Продолжается задач многочленов целыми коэффициентами, методов нахождения рациональных корней. Происходит развитие и завершение базовых знаний о числе. Раздел «Математический анализ» представлен тремя основными темами: «Элементарные функции», «Производная» «Интеграл». И Содержание этого раздела нацелено на получение школьниками конкретных знаний о функции как важнейшей модели описания и исследования разнообразных реальных процессов. Изучение степенных, показательных, логарифмических и тригонометрических функций продолжает знакомство учащихся с основными элементарными функциями, начатое в основной школе. Помимо овладения непосредственными умениями соответствующие уравнения и неравенства, у учащихся формируется запас геометрических представлений, лежащих основе объяснения правомерности стандартных и эвристических приёмов решения задач. Темы «Производная» и «Интеграл» содержат традиционно трудные вопросы для школьников, даже для тех, кто выбрал изучение математики на углублённом уровне, поэтому их изложение предполагает опору на геометрическую наглядность и на естественную интуицию учащихся, более, чем на строгие определения. Тем не менее знакомство с этим материалом представление учащимся об общих идеях и методах математической науки. При изучении раздела «Вероятность и статистика» рассматриваются различные математические модели, позволяющие измерять и сравнивать вероятности различных событий, делать выводы и прогнозы. Этот материал необходим прежде всего для формирования у учащихся функциональной и критически анализировать грамотности — умения воспринимать информацию, представленную В различных формах, понимать вероятностный характер многих реальных зависимостей.

Место учебного предмета «Математика» в учебном плане

Учебный план на изучение математики: алгебры и начал математического анализа, геометрии на углубленном уровне в 10 – 11 классах отводит:

10 класс - 7 часов в неделю / 245 часа в год;

11 класс -7 часов в неделю/ 238 часа в год.

Итого 483 учебных часов.

2. Планируемые результаты освоения учебного предмета Математика: алгебра и начала математического анализа, геометрия

	Углубленный уровень			
	«Системно-теоретические результаты»			
Раздел	II. Выпускник научится	IV. Выпускник получит возможность научиться		
Цели освоения	Для успешного продолжения образования	Для обеспечения возможности успешного		
предмета	по специальностям, связанным с прикладным	продолжения образования по специальностям,		
	использованием математики	связанным с осуществлением научной и		
		исследовательской деятельности в област		
	математики и смежных наук			
Элементы	Свободно оперировать понятиями: конечное	Достижение результатов раздела II;		
теории	множество, элемент множества, подмножество,	оперировать понятием определения, основными		
множеств и	пересечение, объединение и разность множеств,	видами определений, основными видами		
математической	числовые множества на координатной прямой,	теорем;		
логики	отрезок, интервал, полуинтервал, промежуток с	понимать суть косвенного доказательства;		
	выколотой точкой, графическое представление	оперировать понятиями счетного и несчетного		
	множеств на координатной плоскости;	множества;		

задавать множества перечислением и характеристическим свойством; оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример; проверять принадлежность элемента множеству; находить пересечение и объединение множеств, в том числе представленных графически на

обоснования истинности утверждений.

числовой прямой и на координатной плоскости;

доказательные

проводить

В повседневной жизни и при изучении других предметов:

использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

применять метод математической индукции для проведения рассуждений и доказательств и при решении задач.

В повседневной жизни и при изучении других предметов:

использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов

рассуждения

ДЛЯ

	проводить доказательные рассуждения в			
	ситуациях повседневной жизни, при решении			
	задач из других предметов			
Числа и	Свободно оперировать понятиями: натуральное	Достижение результатов раздела II;		
выражения	число, множество натуральных чисел, целое	свободно оперировать числовыми множествами		
	число, множество целых чисел, обыкновенная	при решении задач;		
	дробь, десятичная дробь, смешанное число,	понимать причины и основные идеи расширения		
	рациональное число, множество рациональных	числовых множеств;		
	чисел, иррациональное число, корень степени п,	владеть основными понятиями теории		
	действительное число, множество действительных	делимости при решении стандартных задач		
	чисел, геометрическая интерпретация	гация свободно выполнять тождественн		
	натуральных, целых, рациональных,	преобразования тригонометрических,		
	действительных чисел;	логарифмических, степенных выражений;		
	выполнять округление рациональных и	владеть формулой бинома Ньютона.		
	иррациональных чисел с заданной точностью;			
	сравнивать действительные числа разными			
	способами;			
	упорядочивать числа, записанные в виде			

обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2; преобразования выполнять вычисления И выражений, содержащих действительные числа, в том числе корни натуральных степеней; выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений.

В повседневной жизни и при изучении других предметов:

выполнять и объяснять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

записывать, сравнивать, округлять числовые

	данные реальных величин с использованием	
	разных систем измерения;	
	составлять и оценивать разными способами	
	числовые выражения при решении практических	
	задач и задач из других учебных предметов	
Уравнения и	Свободно оперировать понятиями: уравнение,	Достижение результатов раздела II;
неравенства	неравенство, равносильные уравнения и	свободно определять тип и выбирать метод
	неравенства, уравнение, являющееся следствием	решения показательных и логарифмических
	другого уравнения, уравнения, равносильные на	уравнений и неравенств, иррациональных
	множестве, равносильные преобразования	уравнений и неравенств, тригонометрических
	уравнений;	уравнений и неравенств, их систем;
	решать разные виды уравнений и неравенств и их	свободно решать системы линейных уравнений;
	систем, в том числе некоторые уравнения 3-й и 4-й	решать основные типы уравнений и неравенств
	степеней, дробно-рациональные и	с параметрами.
	иррациональные;	
	овладеть основными типами показательных,	
	логарифмических, иррациональных, степенных	
	уравнений и неравенств и стандартными методами	

их решений и применять их при решении задач; применять теорему Безу к решению уравнений; применять теорему Виета для решения некоторых уравнений степени выше второй; понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать; владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор; использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения; решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами; владеть разными методами доказательства неравенств;

решать уравнения в целых числах; изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами; свободно использовать тождественные преобразования при решении уравнений и систем уравнений

В повседневной жизни и при изучении других предметов:

составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;

составлять и решать уравнения и неравенства с параметрами при решении задач других учебных

	предметов;	
	составлять уравнение, неравенство или их	
	систему, описывающие реальную ситуацию или	
	прикладную задачу, интерпретировать	
	полученные результаты;	
	использовать программные средства при решении	
	отдельных классов уравнений и неравенств	
Функции	Владеть понятиями: зависимость величин,	Достижение результатов раздела II;
	функция, аргумент и значение функции, область	
	определения и множество значений функции,	
	график зависимости, график функции, нули	
	функции, промежутки знакопостоянства,	
	возрастание на числовом промежутке, убывание	
	на числовом промежутке, наибольшее и	
	наименьшее значение функции на числовом	
	промежутке, периодическая функция, период,	
	четная и нечетная функции; уметь применять эти	
	понятия при решении задач;	

владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач; функция, показательная владеть ИМКИТКНОП строить их графики и экспонента; уметь применять свойства показательной функции при решении задач; владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач; применять при решении задач преобразования графиков функций; владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия; применять при решении задач свойства и признаки арифметической и геометрической прогрессий. В повседневной жизни и при изучении других учебных предметов:

	определять по графикам и использовать для	
	решения прикладных задач свойства реальных	
	процессов и зависимостей (наибольшие и	
	наименьшие значения, промежутки возрастания и	
	убывания функции, промежутки	
	знакопостоянства, асимптоты, точки перегиба,	
	период и т.п.);	
	интерпретировать свойства в контексте	
	конкретной практической ситуации.	
Элементы	Владеть понятием бесконечно убывающая	Достижение результатов раздела II;
математического	геометрическая прогрессия и уметь применять его	свободно владеть стандартным аппаратом
анализа	при решении задач;	математического анализа для вычисления
	применять для решения задач теорию пределов;	производных функции одной переменной;
	владеть понятиями бесконечно большие и	свободно применять аппарат математического
	бесконечно малые числовые последовательности и	анализа для исследования функций и
	уметь сравнивать бесконечно большие и	построения графиков, в том числе исследования
	бесконечно малые последовательности;	на выпуклость;
	владеть понятиями: производная функции в точке,	оперировать понятием первообразной функции

	производная функции; для решения задач;	
	вычислять производные элементарных функций и	овладеть основными сведениями об интеграле
	их комбинаций;	Ньютона-Лейбница и его простейших
	исследовать функции на монотонность и	применениях;
	экстремумы;	оперировать в стандартных ситуациях
	строить графики и применять к решению задач, в	производными высших порядков;
	том числе с параметром;	уметь применять при решении задач свойства
	владеть понятием касательная к графику функции	непрерывных функций;
	и уметь применять его при решении задач;	уметь выполнять приближенные вычисления
	владеть понятиями первообразная функция,	(методы решения уравнений, вычисления
	определенный интеграл;	определенного интеграла);
	применять теорему Ньютона-Лейбница и ее	уметь применять приложение производной и
	следствия для решения задач.	определенного интеграла к решению задач
	В повседневной жизни и при изучении других	естествознания;
	учебных предметов: решать прикладные задачи из	владеть понятиями вторая производная,
	физики;	выпуклость графика функции и уметь
	интерпретировать полученные результаты	исследовать функцию на выпуклость
Статистика и	Оперировать основными описательными	Достижение результатов раздела II;

теория вероятностей, логика и комбинаторика

генеральная совокупность и выборкой из нее; оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вероятности событий на вычислять основе подсчета числа исходов; владеть основными понятиями комбинаторики и уметь их применять при решении задач; об представление основах иметь теории вероятностей; иметь представление о дискретных и непрерывных случайных величинах и распределениях, независимости случайных величин; иметь представление о математическом ожидании и дисперсии случайных величин;

представление

распределениях случайных величин;

закона

суть

иметь

понимать

характеристиками числового набора, понятием иметь представление о центральной предельной генеральная совокупность и выборкой из нее; теореме.

0

больших

совместных

чисел

И

	выборочного метода измерения вероятностей;	
	иметь представление о нормальном распределении	
	и примерах нормально распределенных случайных	
	величин;	
	иметь представление о корреляции случайных	
	величин.	
	В повседневной жизни и при изучении других	
	предметов:	
	вычислять или оценивать вероятности событий в	
	реальной жизни;	
	выбирать методы подходящего представления и	
	обработки данных	
Текстовые	Решать разные задачи повышенной трудности;	Достижение результатов раздела II
задачи	анализировать условие задачи, выбирать	
	оптимальный метод решения задачи, рассматривая	
	различные методы;	
	строить модель решения задачи, проводить	

	доказательные рассуждения при решении задачи;				
	решать задачи, требующие перебора вариантов,				
	проверки условий, выбора оптимального				
	результата;				
	анализировать и интерпретировать полученные				
	решения в контексте условия задачи, выбирать				
	решения, не противоречащие контексту;				
	переводить при решении задачи информацию из				
	одной формы записи в другую, используя при				
	необходимости схемы, таблицы, графики,				
	диаграммы.				
	В повседневной жизни и при изучении других				
	предметов:				
	решать практические задачи и задачи из других				
	предметов				
Геометрия	Владеть геометрическими понятиями при решении	Иметь	представление	об	аксиоматическом
	задач и проведении математических рассуждений;	методе;			

самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям; исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах; решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач; формулировать уметь И доказывать

владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач; уметь применять для решения задач свойства плоских и двугранных углов, трехгранного угла, теоремы косинусов и синусов для трехгранного угла; владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач; иметь представление о двойственности

правильных многогранников; владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций; иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника; геометрические утверждения; ПОНЯТИЯМИ стереометрии: владеть призма, параллелепипед, пирамида, тетраэдр; иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач; строить сечения многогранников уметь использованием различных методов, в том числе и метода следов; иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними; применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач; уметь применять параллельное проектирование для изображения фигур; уметь применять перпендикулярности прямой и плоскости при решении задач;

иметь представление о конических сечениях; иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач; при решении формулу применять задач расстояния от точки до плоскости; владеть разными способами задания прямой уравнениями и уметь применять при решении задач; применять при решении задач и доказательстве теорем векторный метод и метод координат; иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, пирамиды, призмы тетраэдра при решении задач; применять теоремы об отношениях объемов при решении задач; применять интеграл для вычисления объемов и

владеть **ПИКИТКНОП** ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач; владеть понятиями расстояние между фигурами в общий пространстве, перпендикуляр ДВУХ скрещивающихся прямых и уметь применять их при решении задач; угол между прямой владеть понятием плоскостью и уметь применять его при решении задач; владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач; владеть понятиями призма, параллелепипед и свойства применять параллелепипеда при решении задач; владеть понятием прямоугольный параллелепипед

поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя; представление иметь движениях В пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач; иметь представление о площади ортогональной проекции; представление трехгранном иметь многогранном угле и применять плоских углов многогранного угла при решении задач; иметь представления о преобразовании подобия, гомотетии и уметь применять их при решении

задач;

и применять его при решении задач; владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач;

иметь представление о теореме Эйлера, правильных многогранниках;

владеть понятием площади поверхностей многогранников и уметь применять его при решении задач;

владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач;

владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач;

иметь представления о вписанных и описанных сферах и уметь применять их при решении задач;

владеть понятиями объем, объемы

уметь решать задачи на плоскости методами стереометрии;

уметь применять формулы объемов при решении задач

многогранников, тел вращения и применять их при решении задач;

иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач;

иметь представление о площади сферы и уметь применять его при решении задач;

уметь решать задачи на комбинации многогранников и тел вращения;

иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур.

В повседневной жизни и при изучении других предметов:

с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные

		модели и интерпретировать результат			
Векторы	И	Владеть понятиями векторы и их координаты;	Достижение результатов раздела II;		
координаты	В	уметь выполнять операции над векторами;	находить объем параллелепипеда и тетраэдра,		
пространстве		использовать скалярное произведение векторов	заданных координатами своих вершин;		
		при решении задач;	задавать прямую в пространстве;		
		применять уравнение плоскости, формулу	находить расстояние от точки до плоскости в		
		расстояния между точками, уравнение сферы при	системе координат;		
		решении задач;	находить расстояние между скрещивающимися		
		применять векторы и метод координат в	в прямыми, заданными в системе координат		
		пространстве при решении задач			
История		Иметь представление о вкладе выдающихся	Достижение результатов раздела II		
математики		математиков в развитие науки;			
		понимать роль математики в развитии России			
Методы		Использовать основные методы доказательства,	Достижение результатов раздела II;		
математики		проводить доказательство и выполнять	применять математические знания к		
		опровержение;	исследованию окружающего мира		
		применять основные методы решения	(моделирование физических процессов, задачи		

математических задач;	экономики)
на основе математических закономерностей в	
природе характеризовать красоту и совершенство	
окружающего мира и произведений искусства;	
применять простейшие программные средства и	
электронно-коммуникационные системы при	
решении математических задач;	
пользоваться прикладными программами и	
программами символьных вычислений для	
исследования математических объектов	

3. Содержание тем учебного предмета «Математика: алгебра и начала математического анализа, геометрия» Профильный уровень

3.1 Алгебра и начала математического анализа

Повторение. Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробно-рациональных выражений. Решение задач с использованием градусной меры угла. Модуль числа и его свойства. Решение задач на движение и совместную работу с помощью линейных и квадратных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков. Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности и функции $y = \sqrt{x}$. Графическое решение уравнений и неравенств.

Степень с действительным показателем, свойства степени.

Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график.

Логарифм числа, свойства логарифма. Десятичный логарифм. Число е. Натуральный логарифм. Преобразование логарифмических выражений. **Логарифмические уравнения и неравенства**. Логарифмическая функция и ее свойства и график.

Степенная функция и ее свойства и график. Иррациональные уравнения. Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг вдоль координатных осей, растяжение и сжатие, отражение относительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля. Системы показательных, логарифмических и иррациональных уравнений.

Системы показательных, логарифмических неравенств. Взаимно обратные функции. Графики взаимно обратных функций. Уравнения, системы уравнений с параметром.

Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0°, 30°,

45°, 60°, 90°, 180°, 270°. (0,
$$\frac{\pi}{6}$$
, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$ рад). Формулы сложения

тригонометрических функций, формулы приведения, формулы двойного аргумента.

Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции. Четность и нечетность функций. Сложные функции.

Тригонометрические функции $y = \cos x, y = \sin x, y = \tan x$. Функция $y = \cot x$. Свойства и графики тригонометрических функций. Арккосинус, арксинус, арктангенс числа. Арккотангенс числа.

Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Обратные тригонометрические функции, их свойства и графики. Решение простейших тригонометрических неравенств.

Тригонометрические уравнения. Решение тригонометрических уравнений методом введения новой переменной. Решение однородных тригонометрических уравнений 1 и 2 степени. Решение уравнений с помощью введения вспомогательного угла. Решение тригонометрических уравнений через функции половинного аргумента. Обор корней тригонометрического уравнения на единичный окружности и с помощью неравенства.

Тригонометрические неравенства. Простейшие тригонометрические неравенства. Тригонометрические неравенства, решаемые заменой переменной.

Производная функции в точке. Касательная к графику функции.

Геометрический и физический смысл производной. Производные элементарных

функций. Правила дифференцирования. Вторая производная, ее геометрический и физический смысл. Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач. Вторая производная. Выпуклость, точки перегиба. Исследование и построение графиков функций. Физический смысл производной.

Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла. Применение интеграла при решении физических задач.

3.2 Геометрия

Повторение. Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Решение задач с помощью векторов и координат.

Наглядная стереометрия. Фигуры и их изображения (куб, пирамида, призма). Основные понятия стереометрии и их свойства. Сечения куба и тетраэдра.

Точка, прямая и плоскость в пространстве, аксиомы стереометрии и следствия из них. Взаимное расположение прямых и плоскостей в пространстве.

Параллельность прямых и плоскостей в пространстве. Изображение простейших пространственных фигур на плоскости. Расстояния между фигурами в пространстве.

Углы в пространстве. Перпендикулярность прямых и плоскостей.

Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в пространстве. Теорема о трех перпендикулярах.

Многогранники. Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды. Вычисление элементов пространственных фигур (ребра, диагонали, углы).

Тела вращения: цилиндр, конус, сфера и шар. Основные свойства прямого кругового цилиндра, прямого кругового конуса. Изображение тел вращения на плоскости. Представление об усеченном конусе, сечения конуса (параллельное основанию и проходящее через вершину), сечения цилиндра (параллельно и перпендикулярно оси), сечения шара. Развертка цилиндра и конуса. Простейшие комбинации многогранников и тел вращения между собой.

Площадь поверхности правильной пирамиды и прямой призмы. Площадь поверхности прямого кругового цилиндра, прямого кругового конуса и шара.

Векторы и координаты в пространстве. Сумма векторов, умножение вектора на число, угол между векторами. Коллинеарные и компланарные векторы. Скалярное произведение векторов. Теорема о разложении вектора по трем некомпланарным векторам. Скалярное произведение векторов в координатах. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объемов. Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот. Свойства движений. Применение движений при решении задач. Уравнение плоскости в пространстве. Уравнение сферы в пространстве. Формула для вычисления расстояния между точками в пространстве.

Понятие об объеме. Объем пирамиды и конуса, призмы и цилиндра. Объем шара. Подобные тела в пространстве. Соотношения между площадями поверхностей и объемами подобных тел.

3.3 Вероятность и статистика. Работа с данными

Повторение. Решение задач на табличное и графическое представление данных. Использование свойств и характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии.

Решение задач на определение частоты и вероятности событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики. Решение задач на вычисление вероятностей независимых событий, применение формулы сложения вероятностей. Решение задач с применением диаграмм Эйлера, дерева вероятностей, формулы Бернулли. Условная вероятность. Правило умножения вероятностей. Формула полной

Дискретные случайные величины и распределения. Независимые случайные величины. Распределение суммы и произведения независимых случайных

Центральные тенденции.

Меры разброса.

вероятности.

величин.

Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин.

4. Тематическое планирование. Математика: алгебра и начала математического анализа, геометрия. 10 класс.

№	темы Темы	Количество часов
	Алгебра	
1.	Вводное повторение	9
2.	ГЛАВА I. Действительные числа	14
3.	ГЛАВА II. Степенная функция	15
4.	ГЛАВА III. Показательная функция	15
5.	ГЛАВА IV. Логарифмическая функция	20
6.	ГЛАВА V. Тригонометрические формулы	32
7.	ГЛАВА VI. Тригонометрические уравнения	22
8.	Итоговое повторение	10
9.	Резерв времени	2
	Геометрия	
10.	Введение. Аксиомы стереометрии и их следствия	7
11.	ГЛАВА I. Параллельность прямых и плоскостей	23
12.	ГЛАВА II. Перпендикулярность прямых и плоскостей	21
13.	ГЛАВА III. Многогранники	15
14.	Основные понятия планиметрии	26
15.	Итоговое повторение	13
	Всего часов (7 ч. в неделю из расчёта 35 учебные недель)	245

Тематическое планирование. Математика: алгебра и начала математического анализа, геометрия. 11 класс.

№	Темы	Количество часов
	Алгебра	
1.	Вводное повторение	12
2.	Глава VIII. Производная и ее геометрический смысл	21
3.	Глава IX. Применение производной к исследованию функций	22
4.	Глава Х. Интеграл	18
5.	Глава XI. Комбинаторика	9
6.	Глава XII. Элементы теории вероятностей	12
7.	Глава XIII. Статистика	3
8.	Итоговое повторение	38
9.	Резерв времени	1
	Геометрия	
10.	Вводное повторение	6
11.	Глава IV. Векторы в пространстве	11
12.	Глава V. Метод координат в пространстве. Движения	26
13.	Глава VI. Цилиндр, конус и шар	21
14.	Глава VII. Объемы тел	22
15.	Итоговое повторение	16
	Всего часов (7 ч. в неделю из расчёта 34 учебные недель)	238